Novel biosynthetic pathway of castasterone from cholesterol in tomato.

نویسندگان

  • Tae-Wuk Kim
  • Soo Chul Chang
  • June Seung Lee
  • Suguru Takatsuto
  • Takao Yokota
  • Seong-Ki Kim
چکیده

Endogenous brassinosteroids (BRs) in tomato (Lycopersicon esculentum) seedlings are known to be composed of C27- and C28-BRs. The biosynthetic pathways of C27-BRs were examined using a cell-free enzyme solution prepared from tomato seedlings that yielded the biosynthetic sequences cholesterol --> cholestanol and 6-deoxo-28-norteasterone <--> 6-deoxo-28-nor-3-dehydroteasterone <--> 6-deoxo-28-nortyphasterol --> 6-deoxo-28-norcastasterone --> 28-norcastasterone (28-norCS). Arabidopsis CYP85A1 that was heterologously expressed in yeast mediated the conversion of 6-deoxo-28-norCS to 28-norCS. The same reaction was catalyzed by an enzyme solution from wild-type tomato but not by an extract derived from a tomato dwarf mutant with a defect in CYP85. Furthermore, exogenously applied 28-norCS restored the abnormal growth of the dwarf mutant. These findings indicate that the C-6 oxidation of 6-deoxo-28-norCS to 28-norCS in tomato seedlings is catalyzed by CYP85, just as in the conversion of 6-deoxoCS to CS. Additionally, the cell-free solution also catalyzed the C-24 methylation of 28-norCS to CS in the presence of NADPH and S-adenosylmethionine (SAM), a reaction that was clearly retarded in the absence of NADPH and SAM. Thus it seems that C27-BRs, in addition to C28-BRs, are important in the production of more active C28-BRs and CS, where a SAM-dependent sterol methyltransferase appears to biosynthetically connect C27-BRs to C28-BRs. Moreover, the tomato cell-free solution converted CS to 26-norCS and [2H6]CS to [2H3]28-norCS, suggesting that C-28 demethylation is an artifact due to an isotope effect. Although previous feeding experiments employing [2H6]CS suggested that 28-norCS was synthesized from CS in certain plant species, this is not supported in planta. Altogether, this study demonstrated for the first time, to our knowledge, that 28-norCS is not synthesized from CS but from cholesterol. In addition, CS and [2H6]CS were not converted into BL and [2H6]BL, respectively, confirming an earlier finding that the active BR in tomato seedlings is not BL but CS. In conclusion, the biosynthesis of 28-norBRs appears to play a physiologically important role in maintaining homeostatic levels of CS in tomato seedlings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis.

Brassinosteroids (BRs) are steroidal plant hormones that are essential for growth and development. It has been proposed that BRs are synthesized via two parallel pathways, the early and late C-6 oxidation pathways according to the C-6 oxidation status. The tomato (Lycopersicon esculentum) Dwarf gene encodes a cytochrome P450 that has been shown to catalyze the C-6 oxidation of 6-deoxocastastero...

متن کامل

The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis.

Brassinosteroids are steroidal hormones essential for the growth and development of plants. Brassinolide, the most biologically active brassinosteroid, has a seven-membered lactone ring that is formed by a Baeyer-Villiger oxidation of its immediate precursor castasterone. Despite its potential key role in controlling plant development, brassinolide synthase has not been identified. Previous wor...

متن کامل

Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees

Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate-limiting step in the BR-biosynthetic pathway. Here, we report the functional characterizations of PtC...

متن کامل

Arabidopsis CYP85A2 catalyzes lactonization reactions in the biosynthesis of 2-deoxy-7-oxalactone brassinosteroids.

Brassinolide (BL), a plant 7-oxalactone-type steroid hormone, is one of the active brassinosteroids (BRs) that regulates plant growth and development. BL is biosynthesized from castasterone by the cytochrome P450 monooxygenase, CYP85A2. We showed that a Pichia pastoris transformant that synchronously expresses Arabidopsis P450 reductase gene ATR1 and P450 gene CYP85A2 converts teasterone and ty...

متن کامل

Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana

A metabolic study revealed that 28-norcastasterone in Arabidopsis is synthesized from cholesterol via the late C-6 oxidation pathway. On the other hand, the early C-6 oxidation pathway was found to be interrupted because cholestanol is converted to 6-oxocholestanol, but further metabolism to 28-norcathasterone was not observed. The 6-oxoBRs were found to have been produced from the respective 6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 135 3  شماره 

صفحات  -

تاریخ انتشار 2004